Page-1

Population ecology
Population life tables

I. Introduction to ecological populations, life tables, and population growth models

This week we begin a new unit on population ecology. A population is a set of individuals of the same species living in a given region or habitat. Populations are examples of ecological systems. As such, they exhibit both structural and functional properties. The total number of individuals in a population, the age distribution of those individuals, the sex ratio of adults, probabilities of survival (or mortality), and rates of fecundity are key traits of population structure. Ecologists employ a variety of methods to study the structure of populations. 

Life history tables, or life tables, are a method of quantifying population structure that addresses all of the above population traits. Life tables provide age-specific information on survival and fecundity rates for a particular population. An ecologist can collect two very different types of life history data for individuals in a population which can lead to two kinds of life tables. Horizontal (dynamic or cohort) life tables require ecologists to follow all the individuals of a single cohort in a population from birth to death. Construction of horizontal life tables frequently depends on the recapture of marked individuals for mobile species or repeated, representative samples of sessile species. Since individuals must be followed from birth to death, the horizontal life table technique is not well suited for the study of long-lived individuals. Vertical (static or time-specific) life tables consist of data on individuals of all ages in a population from a single point in time. In vertical life table studies, it is important to work with a large, random sample of individuals to ensure that the data is representative of the entire population. For example, the age distribution of your sample of individuals should reflect the age distribution of the whole population. Non-destructive sampling methods are particularly useful for the construction of vertical life tables as they minimize the impact of large sampling efforts on population dynamics.

Both dynamic and static observations of population structure can be used 1) to quantify the age structure of a population; 2) to estimate an optimal age of sexual maturity; and 3) to predict population growth rates. Population growth projections are based on mathematical models such as the exponential growth model:

Nt = N0 (ert).
In the exponential growth model, the number of individuals at any time (t) can be predicted using the number of individuals at the starting time (N0), the base of the natural logarithm (e = 2.7182818), the intrinsic rate of population growth (r), and the time (t) since N0. The intrinsic rate of population growth (r) is a direct consequence of the age structure of a population. Environmental conditions, seasonal effects, and population densities also shape population growth rates. In general, populations only exhibit exponential growth when resources are not limited. Therefore, ecologists developed density-dependent growth models to simulate the effects of environmental stress on population growth. Other population growth model alternatives include the Leslie matrix and Lotka-Volterra model.
II. Anatomy of life tables.
A life history table contains information on age classes (x), the total number of individuals in each age class (n(x)), survival rates for each age class (l(x)), fecundity rates for each age class (b(x)), and the number of offspring produced per individual at each age class (l(x)*b(x) and l(x)*b(x)*x). The
following is an example of a horizontal life table:

Example 1: Horizontal Life Table
(months) 
	Age class (months)

x
	Number/age class

n(x)
	Survival rate

l(x)
	Fecundity

b(x)
	Offspring/ind

l(x)*b(x)
	Age-weighted fecundity

l(x)*b(x)*x

	0
	134
	1.00
	0.00
	0.00
	0.00

	1
	117
	0.873
	0.00
	0.00
	0.00

	2
	82
	0.612
	6.28
	3.84
	7.69

	3
	64
	0.478
	9.60
	4.59
	13.76

	4
	52
	0.388
	12.10
	4.70
	18.78

	5
	43
	0.321
	13.60
	4.36
	21.82

	6
	23
	0.172
	17.40
	2.99
	17.92

	7
	13
	0.097
	14.50
	1.41
	9.85

	8
	3
	0.022
	15.00
	0.34
	2.69

	9
	2
	0.015
	0.00
	0.00
	0.00

	10
	1
	0.007
	8.30
	0.06
	0.62

	11
	0
	0.000
	5.00
	0.00
	0.00

	
	
	
	
	
	

	Sum
	
	
	
	22.28
	93.12

	
	
	
	
	
	

	
	
	
	R0
	22.28 offspring
	

	
	
	
	G
	4.18 months
	

	
	
	
	r
	0.74 ind/month


	

	
	
	
	Optimal age for sexual maturity
	5 months
	


Number/

You will be provided with fecundity rates (b(x)) and pre-determined age classes (x) for life tables in this lab. Calculation of the other parameters depends on the type of life table you are constructing. The important differences between horizontal and vertical life tables relate to their respective sampling approaches (described above) and calculations of survivorship.
Horizontal (dynamic or cohort) life tables

When using cohort information, calculate the survival rate for an age class (l(x)) as the number of individuals in that age class (n(x)) divided by the number of individuals alive in the first age class (n(0)). In the above table, survival at age class 0 (l(0)) is n(0)/n(0) or 134/134 = 1.000. At age class 1, l(1) = n(1)/n(0) or 117/134 = 0.873. Next, use the provided fecundity data to calculate the offspring produced per individual in each age class (l(x)*b(x)) and the age-weighted number of offspring for each age class

(l(x)*b(x)*x). Once the horizontal life table is completed, you can calculate the net reproductive rate (R0), mean generation time (G), and intrinsic growth rate (r) of the population.

Net reproductive rate (R0) is the sum of the l(x)*b(x) column. It represents the expected number of offspring an individual will produce over its lifetime in the population. If R0 >1, then population size increases. If R0 < 1, then population size decreases, and if R0 = 1, then population size does not change. In the population described by the horizontal life table above, an individual is expected to produce 22.28 offspring over its lifetime. Mean generation time (G) is the sum of the l(x)*b(x)*x column divided by the net reproductive rate (R0). The intrinsic growth rate (r) is an estimate of population growth; it is equal to the natural log of the net reproductive (R0) divided by the mean generation time (G):

r = ln (R0) / G.
The optimal age for sexual maturity in the population corresponds to the age class with the greatest age-weighted fecundity (l(x)*b(x)*x).
Vertical (static or time-specific) life table

When using time-specific information, you need to count all of the individuals you sampled.

First, record the number of individuals at each age class in your sample (s(x)). See the following vertical life table example.
Example 2: Vertical Life Table for a Gambusia holbrooki population
	Age class (days)

x
	Sample/age class

s(x)
	Number/age class

n(x)
	Survival rate

l(x)
	Fecundity

b(x)
	Offspring/ind

l(x)*b(x)
	Age-weighted fecundity

l(x)*b(x)*x

	0
	130
	759
	1.00
	0.00
	0.00
	0.00

	30
	190
	629
	0.829
	0.00
	0.00
	0.00

	60
	240
	439
	0.578
	0.00
	0.00
	0.00

	90
	120
	199
	0.262
	24.00
	6.29
	566.32

	120
	60
	79
	0.104
	27.00
	2.808
	336.96

	150
	15
	19
	0.025
	29.00
	0.73
	108.89

	180
	3
	4
	0.005
	32.00
	0.17
	30.36

	210
	1
	1
	0.001
	0.00
	0.00
	0.00

	240
	0
	0
	0.000
	0.00
	0.00
	0.00

	
	
	
	
	
	
	

	Sum
	759
	
	
	
	9.998
	1042.53

	
	
	
	
	
	
	

	
	
	
	
	R0
	9.998 offspring
	

	
	
	
	
	G
	104.27 days
	

	
	
	
	
	r
	0.0221 ind/day

	

	
	
	
	
	Optimal age for sexual maturity
	90 days
	


(days)Next, you must determine how many individuals are alive in each age class (n(x)) using data you collect at a single time in the field. The assumption stands that each individual you sampled was alive in the first age class (x = 0). For example, if you sample 759 individuals, all of them had to have been alive at the first age class (x = 0). So, n(0) = 759 or the sum of the s(x) column (see the above vertical life table example). If 130 of the individuals in your total sample were between 0 and 29 days old (age class 0), then 629 individuals in your sample were alive at the second age class (x = 30). Once you have calculated the number alive at each age class (n(x)), you can determine the survival rate (l(x)) for each age class. Survival rate for a specific age class (l(x)) is the number alive in that age class (n(x)) divided by the number alive in the first age class (n(0)), or l(x) = n(x) / n(0). In the above vertical life table example, the survival rate at age class 0 (l(0)) = 759/759 = 1.000, l(30) = 629/759 = 0.829, and so on.
All other calculations for vertical life tables are the same as described above for horizontal life tables.

III. Instructions

Field Instructions:

We will collect sample specimens of G. holbrooki in a pond on campus. For each collected specimen, we will non-destructively measure its standard length (in mm) and then release it (handle the fish carefully). Your TA will determine the number of fish to be collected at each pond by each group.
Calculations:

The age of each fish (in days) will be calculated using the relationship:

Age = 8*(Standard Length)-68              [r2=0.702, P=0.001]
In the above formula, fish smaller than 9 mm will have ages < 0 days. Therefore, exclude all fish with standard lengths < 9 mm. Use the fecundity values provided in Example 2 above to complete a vertical life table for the mosquitofish population that we study. 
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